Metadata is information about the context, quality, provenance, and/or accessibility of a set of data. In order for your data to be accessible to you, your colleagues, and other researchers, it must be properly documented. Put Simply:

Metadata is:

  • Frequently required for depositing a data set in disciplinary repositories, or for publishing in a research journal;
  • Necessary for the longevity and reproducibility of research data;
  • Useful for analyzing the data in data files.

Common examples you see every day include:

Beyond Structured Metadata: Other Elements of Documentation


A README file can be very useful in understanding your data. They can be used in many ways to help you manage your data. Kristin Briney's Data Ab Initio blog post on README.txt files provides a brief introduction to effectively creating and using these to manage your data.  

If you plan to deposit your data into USU's Digital Commons, a README file is required. A README File template is available to assist you, or you use of of your own design or modify one listed below.

Other good resources include:

Data Dictionaries:

When a dataset has many variables that require explanation, a data dictionary should be provided. Spreadsheet data should have short variable names at the top of each column.  Often it is difficult to decipher what these mean.  Create a data dictionary that lists the variable names, their meanings and units, coding values, any known issues with the data (missing values, any known errors), identify your null value, and other information that would help someone in the future make sense of your data set.

Resources for Data Dictionaries:


Codebooks are often used with survey data, and can serve the purpose of a data dictionary.  In addition to identifying the variables and their meaning in a data set, a code book describes information such as the sampling method, includes the text of the questions, and information on the number or responses to each question.

Resources for Code Books: